Probability and Statistical Engineering, ENEE2307

Quiz\#4
Name:

Sec \#1

12 Dec 2017
Std. No.:
Suppose continuous r.v.s $(\mathrm{X}, \mathrm{Y}) \in \mathrm{R}^{2}$ have joint pdf

$$
f_{x, y}(x, y)=\left\{\begin{array}{cc}
c x y & ; x \geq 0 ; \text { and } 0 \leq x+y \leq 1 \\
& 0
\end{array} \quad ;\right. \text { otherwise }
$$

a. (3 points) Find the c?
b. (3 points) Determine the marginal pdfs for X and Y ?
c. (2 points) Are X and Y independent?
d. (2 points) Find $P(X+Y \leq 0.5)$.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-x} f_{x, y}(x, y) d y d x= \int_{0}^{1} \int_{0}^{1-x} c x y d y d x=1 \\
& \int_{0}^{1} c x \frac{(1-x)^{2}}{2} d x=1 \\
& \frac{c}{2}\left[\frac{x^{2}}{2}-\frac{2 x^{3}}{3}+\left.\frac{x^{4}}{4}\right|_{0} ^{1}=1\right. \\
& c=24
\end{aligned} \begin{aligned}
& \text { b) } f_{x}(x)=24 \int_{0}^{1-x} x y d y=12\left(x-x^{2}\right) \\
& f_{y}(y)= 24 \int_{0}^{1-y} x y d y=12\left(y-y^{2}\right) \\
& f_{x, y}(x, y) \stackrel{?}{=} f_{x}(x) f_{x}(y) \\
& 24 x y \neq 12\left(x-x^{2}\right) * 12\left(y-y^{2}\right)
\end{aligned}
$$

X and Y are not statistically independent
d) $\mathrm{P}(\mathrm{X}+\mathrm{Y}<0.5)=\mathrm{P}(\mathrm{Y}<0.5-\mathrm{X})=24 \int_{0}^{0.5} \int_{0}^{0.5-x} x y d y d x=$

$$
24 \int_{0}^{0.5} x \frac{(0.5-x)^{2}}{2} d x=\frac{24}{2}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}+\left.\frac{x^{4}}{4}\right|_{0} ^{0.5}=\frac{3}{16}\right.
$$

Probability and Statistical Engineering, ENEE2307

Quiz\#5
Name:
Sec \#4
2-Jan-1

Std. No.:

An insurance company has 25000 automobile policy holders. If the yearly claim of a policy holder is a random variable with mean 320 and standard deviation 540, approximate the probability that the total yearly claim exceeds 8.3 million.

$$
\begin{gathered}
Y=X_{1}+X_{2}+\cdots+X_{25000} \\
\mu_{y}=n \mu_{x}=25000 * 320 \\
\sigma_{y}^{2}=n \sigma_{x}^{2}=25000 * 540^{2} \\
P\left\{z>8.3 \times 10^{6}\right\}=1-\phi\left(\frac{8.3 \times 10^{6}-25000 * 320}{540 * \sqrt{25000}}\right) \\
=1-\phi(3.51)=0.00023
\end{gathered}
$$

Probability and Statistical Engineering, ENEE2307
Quiz\#MakeUp
Name:
Sec \#
1/13/2018
Std. No.:
Assume the r.v. X has a Bernoulli distribution, that is,

$$
f(x, p)=\left\{\begin{array}{cc}
p^{x}(1-p)^{1-x} & ; x=0,1 \\
0 & ; \text { otherwise }
\end{array}\right.
$$

Where $0<p \equiv \theta<1$

Use the ML technique for n samples to find an estimator for p ?

$$
\begin{gathered}
L(\theta)=\prod_{1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}= \\
=p^{\sum_{1}^{n} x_{i}}(1-p)^{1-\sum_{1}^{n} x_{i}} \\
\ln L(\theta)=\ln \left(p^{\sum_{1}^{n} x_{i}}(1-p)^{1-\sum_{1}^{n} x_{i}}\right)= \\
\ln L(\theta)=\left(\sum_{1}^{n} x_{i}\right) \ln p+\left(1-\sum_{1}^{n} x_{i}\right) \ln (1-p) \\
\frac{d}{d p} \ln L(p)=\frac{d}{d p}\left[\left(\sum_{1}^{n} x_{i}\right) \ln p+\left(1-\sum_{1}^{n} x_{i}\right) \ln (1-p)\right]=0 \\
\left(\sum_{1}^{n} x_{i}\right) \frac{1}{p}+\left(1-\sum_{1}^{n} x_{i}\right) \frac{1}{1-p}=0 \\
\left(\sum_{1}^{n} x_{i}\right) \frac{1}{p}=\left(1-\sum_{1}^{n} x_{i}\right) \frac{1}{p-1} \\
\frac{p-1}{p}=\frac{1-\sum_{1}^{n} x_{i}}{\sum_{1}^{n} x_{i}} \\
\frac{1}{p}=1-\frac{1-\sum_{1}^{n} x_{i}}{\sum_{1}^{n} x_{i}}=1-\frac{1}{\sum_{1}^{n} x_{i}}+1 \\
p=\frac{\sum_{1}^{n} x_{i}}{2-\frac{1}{\sum_{1}^{n} x_{i}}}=\frac{\sum_{1}^{n} x_{i}-1}{1} \\
(1)
\end{gathered}
$$

Let X and Y be random variables with a joint pdf $f_{X, Y}(x, y)=C$ for $0 \leq X+Y \leq 1,0 \leq X \leq 1$, $0 \leq Y \leq 1$
a. Find C so that this is a valid joint pdf
b. Find the marginal density functions of X and Y.
c. Are X and Y independent?
d. Find the conditional pdf of Y given $\mathrm{X}=0.5$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d y d x=1=\int_{0}^{1} \int_{0}^{1-x} c d y d x=c \int_{0}^{1}(1-x) d x=c\left(x-\frac{x^{2}}{2}\right)_{0}^{1}=\frac{c}{2} \\
& c=2
\end{aligned}
$$

the marginal density functions of X and Y

$$
\begin{aligned}
& f(x)=\int_{0}^{1-x} 2 d y=2-2 x \\
& f(y)=\int_{0}^{1-y} 2 d y=2-2 y
\end{aligned}
$$

Are X and Y independent? No $f(x) f(y) \neq f(x, y)$

$$
(2-2 x)(2-2 y) \neq 2
$$

Find the conditional pdf of Y given $\mathrm{X}=0.5$
$f(y \mid x=0.5)=\frac{f(x, y)}{f(x=0.5)}=\frac{2}{2-0.5 * 2}=2$

